Fully simple semihypergroups, transitive digraphs, and sequence A000712

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Transitive Soft Sets over Semihypergroups

The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by SH and TH , respectively. It is shown that TH = SH if and only if β = β ∗. We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.

متن کامل

On transitive soft sets over semihypergroups

The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by $S_{H}$ and  $T_{H},$ respectively. It is shown that $T_{H}=S_{H}$ if and only if $beta=beta^{*}.$ We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.

متن کامل

3-transitive Digraphs

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u, v, w, x) of length 3 in D implies the existence of the arc (u, x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g...

متن کامل

quasi - transitive digraphs ∗

Let D = (V , A) be a directed graph (digraph) without loops nor multiple arcs. A set of vertices S of a digraph D is a (k, l)-kernel of D if and only if for any two vertices u, v in S, d(u, v) ≥ k and for any vertex u in V \ S there exists v in S such that d(u, v) ≤ l. A digraph D is called quasi-transitive if and only if for any distinct vertices u, v, w of D such that u→ v → w, then u and w a...

متن کامل

Underlying graphs of 3-quasi-transitive digraphs and 3-transitive digraphs

A digraph is 3-quasi-transitive (resp. 3-transitive), if for any path x0x1 x2x3 of length 3, x0 and x3 are adjacent (resp. x0 dominates x3). César Hernández-Cruz conjectured that if D is a 3-quasi-transitive digraph, then the underlying graph of D, UG(D), admits a 3-transitive orientation. In this paper, we shall prove that the conjecture is true.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2014

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2014.05.033